Modular Invariance in 2D CFT	Universal Features of the Spectrum	3D Gravity: Biting Into the Bagel	3D Gravity from 2D CFT
0000	0000	00000	00000

Universality in 2D CFT and 3D Gravity

How to Toast your Bagels Perfectly Every Time

DAVID GRABOVSKY

UCSB - Berenstein Group Meeting

January 28, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

1 Modular Invariance in 2D CFT

2 Universal Features of the Spectrum

- The Thermal Partition Function
- Thermodynamics and Spectrum
- 3D Gravity: Biting Into the Bagel
 The Classical Bulk Solutions
 - The Hawking–Page Transition

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

The Partition Function in QFT

Consider an arbitrary QFT on $S_L^1 \times \{\text{time}\}\$ at temperature $T = \frac{1}{\beta}$ with Hamiltonian H. The Hilbert space \mathcal{H} consists of states on S_L^1 , so H has a discrete spectrum $\{E_n\}\$ bounded below. The partition function is

$$Z_L(\beta) \equiv \operatorname{Tr}_{\mathcal{H}}\left(e^{-\beta H}\right) = \sum_n \langle n|e^{-\beta H}|n\rangle = \sum_n e^{-\beta E_n}.$$
 (1.1)

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

The Partition Function in QFT

Consider an arbitrary QFT on $S_L^1 \times \{\text{time}\}\$ at temperature $T = \frac{1}{\beta}$ with Hamiltonian H. The Hilbert space \mathcal{H} consists of states on S_L^1 , so H has a discrete spectrum $\{E_n\}\$ bounded below. The partition function is

$$Z_L(\beta) \equiv \operatorname{Tr}_{\mathcal{H}}\left(e^{-\beta H}\right) = \sum_n \langle n|e^{-\beta H}|n\rangle = \sum_n e^{-\beta E_n}.$$
 (1.1)

We can always write $Z_L(\beta)$ as a Euclidean path integral on the bagel:

$$Z_L(\beta) = \int_{T^2(L,\beta)} \mathcal{D}\phi \, e^{-S[\phi]} = \beta \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} = \beta \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} = \beta \begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 \end{bmatrix} = \beta$$

・ロト・西ト・山田・山田・山口・

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

The Partition Function in QFT

Consider an arbitrary QFT on $S_L^1 \times \{\text{time}\}\$ at temperature $T = \frac{1}{\beta}$ with Hamiltonian H. The Hilbert space \mathcal{H} consists of states on S_L^1 , so H has a discrete spectrum $\{E_n\}$ bounded below. The partition function is

$$Z_L(\beta) \equiv \operatorname{Tr}_{\mathcal{H}}\left(e^{-\beta H}\right) = \sum_n \langle n|e^{-\beta H}|n\rangle = \sum_n e^{-\beta E_n}.$$
 (1.1)

We can always write $Z_L(\beta)$ as a Euclidean path integral on the bagel:

$$Z_L(\beta) = \int_{T^2(L,\beta)} \mathcal{D}\phi \, e^{-S[\phi]} = \beta \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} = \beta \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} = \beta \begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 \end{bmatrix} = \beta$$

This relation is completely general. It relates two *different* theories with the same Euclidean action but on spatial manifolds of different sizes.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

The Partition Function in CFT

If our theory is scale-invariant, then $Z_L(\beta) = L_{aL}(a\beta)$, and only the "bagel aspect ratio" $\frac{\beta}{L}$ matters. Thus we set $L = 2\pi$. It follows that

$$Z(\beta) \equiv Z_{2\pi}(\beta) = Z_{\beta}(2\pi) = Z_{2\pi}\left(2\pi \cdot \frac{2\pi}{\beta}\right) = Z\left(\frac{4\pi^2}{\beta}\right).$$
(1.3)

A 2D CFT is modular invariant if one has $Z(\beta) = Z\left(\frac{4\pi^2}{\beta}\right)$.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

The Partition Function in CFT

If our theory is scale-invariant, then $Z_L(\beta) = L_{aL}(a\beta)$, and only the "bagel aspect ratio" $\frac{\beta}{L}$ matters. Thus we set $L = 2\pi$. It follows that

$$Z(\beta) \equiv Z_{2\pi}(\beta) = Z_{\beta}(2\pi) = Z_{2\pi}\left(2\pi \cdot \frac{2\pi}{\beta}\right) = Z\left(\frac{4\pi^2}{\beta}\right).$$
(1.3)

A 2D CFT is modular invariant if one has $Z(\beta) = Z\left(\frac{4\pi^2}{\beta}\right)$.

The UV spectrum and thermodynamics are determined by the IR. But the IR is determined largely by the ground state, which is *universal*.

More generally, β is replaced by $\tau = \frac{i\beta}{2\pi} \in \mathbb{C}$, and in fact $Z(\tau) = Z(-\frac{1}{\tau})$. Even more generally, $Z(\tau)$ is invariant under $PSL(2,\mathbb{Z})$ transformations.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

Operators and their Dimensions

Under the operator-state correspondence, every state with energy E corresponds to a local operator of dimension Δ , with $E = \Delta - \frac{c}{12}$.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Operators and their Dimensions

Under the operator-state correspondence, every state with energy E corresponds to a local operator of dimension Δ , with $E = \Delta - \frac{c}{12}$.

- The central charge is $c = c_L + c_R$, and we assume that $c_L = c_R$.
- The dimension of \mathcal{O} is $\Delta = h + \overline{h}$, while its spin is $J = h \overline{h}$. We will treat only the case J = 0 of zero angular potential.
- In radial quantization, the Hamiltonian is a dilation operator, $H = D - \frac{c}{12}$, shifted by the Casimir energy $E_0 = -\frac{c}{12}\frac{2\pi}{L}$.
- The eigenvalues of H are E; the eigenvalues of D are Δ .
- The ground state |0⟩ corresponds to the identity operator 1, which is the unique operator with Δ₀ = 0 ⇐⇒ E₀ = - ^c/₁₂.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

Operators and their Dimensions

Under the operator-state correspondence, every state with energy E corresponds to a local operator of dimension Δ , with $E = \Delta - \frac{c}{12}$.

- The central charge is $c = c_L + c_R$, and we assume that $c_L = c_R$.
- The dimension of \mathcal{O} is $\Delta = h + \overline{h}$, while its spin is $J = h \overline{h}$. We will treat only the case J = 0 of zero angular potential.
- In radial quantization, the Hamiltonian is a dilation operator, $H = D - \frac{c}{12}$, shifted by the Casimir energy $E_0 = -\frac{c}{12}\frac{2\pi}{L}$.
- The eigenvalues of H are E; the eigenvalues of D are Δ .
- The ground state |0⟩ corresponds to the identity operator 1, which is the unique operator with Δ₀ = 0 ⇐⇒ E₀ = - ^c/₁₂.

Including degeneracies, $Z(\beta) = \sum_{E} \rho(E)e^{-\beta E} = \sum_{\Delta} \rho(\Delta)e^{-\beta\left(\Delta - \frac{c}{12}\right)}$, where the density of states $\rho(E) = e^{S(E)}$ is related to the entropy.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

2 Universal Features of the Spectrum

- The Thermal Partition Function
- Thermodynamics and Spectrum

3D Gravity: Biting Into the Bagel The Classical Bulk Solutions

• The Hawking–Page Transition

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Thermal Partition Function

Goal: to study the thermodynamics of 2D CFTs at high temperature.

High temperature:
$$\beta \longrightarrow 0$$
. Then $Z(\beta) \longrightarrow \sum_{E} \rho(E) e^{-0E} \sim N \sim e^{S}$.

Low temperature: $\beta \longrightarrow \infty$. Then $Z(\beta) \longrightarrow \sum_{E} e^{-\infty E} = e^{-\beta E_0} = e^{\frac{\beta c}{12}}$.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

The Thermal Partition Function

Goal: to study the thermodynamics of 2D CFTs at high temperature.

High temperature:
$$\beta \longrightarrow 0$$
. Then $Z(\beta) \longrightarrow \sum_{E} \rho(E) e^{-0E} \sim N \sim e^{S}$.

Low temperature:
$$\beta \longrightarrow \infty$$
. Then $Z(\beta) \longrightarrow \sum_{E} e^{-\infty E} = e^{-\beta E_0} = e^{\frac{\beta e}{12}}$.

These two regimes are linked by modular invariance. At high temperature,

$$Z(\beta) = Z\left(\frac{4\pi^2}{\beta}\right) = e^{\frac{c}{12} \cdot \frac{4\pi^2}{\beta}} = e^{\frac{\pi^2 c}{3\beta}} \implies \log Z(\beta) = \frac{\pi^2 c}{3\beta}.$$
 (2.1)

This statement is *asymptotic*: it's a good enough approximation at high enough temperatures, but is silent on *when* it's valid and *how good* it is.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thermodynamics and Spectrum

Let's make like undergraduates and compute! The free energy $F(\beta)$ is

$$\log Z(\beta) = \frac{\pi^2 c}{3\beta} = \beta F(\beta) \implies F(\beta) = \frac{\pi^2 c}{3\beta^2} = \frac{c}{12} \left(\frac{2\pi}{\beta}\right)^2.$$
 (2.2)

The thermodynamic entropy $S(\beta)$ at high temperature is obtained from

$$S(\beta) = \left(1 - \beta \partial_{\beta}\right) \log Z(\beta) = \frac{2\pi^2 c}{3\beta}.$$
 (2.3)

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thermodynamics and Spectrum

Let's make like undergraduates and compute! The free energy $F(\beta)$ is

$$\log Z(\beta) = \frac{\pi^2 c}{3\beta} = \beta F(\beta) \implies F(\beta) = \frac{\pi^2 c}{3\beta^2} = \frac{c}{12} \left(\frac{2\pi}{\beta}\right)^2.$$
 (2.2)

The thermodynamic entropy $S(\beta)$ at high temperature is obtained from

$$S(\beta) = \left(1 - \beta \partial_{\beta}\right) \log Z(\beta) = \frac{2\pi^2 c}{3\beta}.$$
 (2.3)

We change to the microcanonical ensemble via $\langle E \rangle_{\beta} = -\partial_{\beta} \log Z(\beta)$:

$$S(E) = 2\pi \sqrt{\frac{c}{3}E} \iff \rho(\Delta) = \exp\left[2\pi \sqrt{\frac{c}{3}\left(\Delta - \frac{c}{12}\right)}\right].$$
 (2.4)

This is the Cardy formula. It says that at high energies, all unitary, modular invariant 2D CFTs have universal thermodynamics.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Comments on the Cardy Formula

• The asymptotic behavior modular-invariant 2D CFTs is completely fixed by the vacuum state, i.e. by the mighty identity operator.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Comments on the Cardy Formula

- The asymptotic behavior modular-invariant 2D CFTs is completely fixed by the vacuum state, i.e. by the mighty identity operator.
- **(2)** Modular invariance means that *both* IR and UV are universal:

$$\log Z(\beta) = \frac{c}{12} \begin{cases} \frac{4\pi^2}{\beta}, & \beta \ll 2\pi, \\ \beta, & \beta \gg 2\pi. \end{cases}$$
(2.5)

These results are only valid away from the self-dual point $\beta_* = 2\pi$, but they might remind you of (!) the Hawking-Page transition.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Comments on the Cardy Formula

- The asymptotic behavior modular-invariant 2D CFTs is completely fixed by the vacuum state, i.e. by the mighty identity operator.
- **(2)** Modular invariance means that *both* IR and UV are universal:

$$\log Z(\beta) = \frac{c}{12} \begin{cases} \frac{4\pi^2}{\beta}, & \beta \ll 2\pi, \\ \beta, & \beta \gg 2\pi. \end{cases}$$
(2.5)

These results are only valid away from the self-dual point $\beta_* = 2\pi$, but they might remind you of (!) the Hawking–Page transition.

We've just solved the bootstrap equation

$$Z(\beta) = \sum_{\Delta} \rho(\Delta) e^{-\beta \left(\Delta - \frac{c}{12}\right)} = e^{\frac{\pi^2 c}{3\beta}}$$
(2.6)

for $\rho(\Delta).$ The singular term on the RHS can teach us about asymptotics on the LHS: that's how the bootstrap works.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

Modular Invariance in 2D CFT

2 Universal Features of the Spectrum

- The Thermal Partition Function
- Thermodynamics and Spectrum

3D Gravity: Biting Into the Bagel

- The Classical Bulk Solutions
- The Hawking–Page Transition

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel ○●○○○ 3D Gravity from 2D CFT

The Classical Bulk Solutions

Semiclassical AdS₃ gravity \leftrightarrow CFT₂ with $c = \frac{3}{2G} \gg 1$. The spectrum is given by $\rho(E) \sim e^{S(E)}$, so we focus on S(E) at leading order in c.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Classical Bulk Solutions

Semiclassical AdS₃ gravity \leftrightarrow CFT₂ with $c = \frac{3}{2G} \gg 1$. The spectrum is given by $\rho(E) \sim e^{S(E)}$, so we focus on S(E) at leading order in c.

Classical solutions to pure 3D gravity must be locally isometric to AdS_3 :

- **Q** Global AdS₃ corresponds to the vacuum (i.e. 1): $E = -\frac{1}{8G} = -\frac{c}{12}$.
- **BTZ black holes** correspond to excited states (i.e. heavy primaries) and are formed from AdS_3 by discrete identifications: $E = M \ge 0$.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The Classical Bulk Solutions

Semiclassical AdS₃ gravity \leftrightarrow CFT₂ with $c = \frac{3}{2G} \gg 1$. The spectrum is given by $\rho(E) \sim e^{S(E)}$, so we focus on S(E) at leading order in c.

Classical solutions to pure 3D gravity must be locally isometric to AdS_3 :

- **Global** AdS₃ corresponds to the vacuum (i.e. 1): $E = -\frac{1}{8C} = -\frac{c}{12}$.
- **BTZ black holes** correspond to excited states (i.e. heavy primaries) and are formed from AdS_3 by discrete identifications: $E = M \ge 0$.

These have entropy in agreement with the Cardy formula (?!?!):

$$S(E) = \frac{A}{4G} = 2\pi \sqrt{\frac{c}{3}E} \qquad (A \sim \sqrt{M})$$
(3.1)

Unlike the Cardy formula, this applies for all E, as long as $c \gg 1$.

Modular Invariance in 2D CFTUniversity0000000

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Classical Bulk Solutions

- More generally, there are $SL(2,\mathbb{Z})$ black holes that replace β by the complex modulus $\tau \in \mathcal{F} = \mathbb{H}^2/PSL(2,\mathbb{Z}) \subset \mathbb{C}$.
- One can apply large diffeomorphisms to excite "boundary gravitons" and create moving BHs. (In CFT, these correspond to descendants.)
- Turning on matter, one finds conical defects with ^c/₁₂ < E < 0, subleading horizonless geometries, and exotic black objects.</p>

Modular Invariance in 2D CFTUniversity00000000

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Classical Bulk Solutions

- More generally, there are $SL(2,\mathbb{Z})$ black holes that replace β by the complex modulus $\tau \in \mathcal{F} = \mathbb{H}^2/PSL(2,\mathbb{Z}) \subset \mathbb{C}$.
- One can apply large diffeomorphisms to excite "boundary gravitons" and create moving BHs. (In CFT, these correspond to descendants.)
- Turning on matter, one finds conical defects with $-\frac{c}{12} < E < 0$, subleading horizonless geometries, and exotic black objects.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A Sparse Light Spectrum

So pure AdS_3 ($E = -\frac{c}{12}$) and the BTZ geometries ($E \ge 0$) are the only smooth solutions of pure 3D gravity: there's nothing in the gap.

So pure AdS_3 ($E = -\frac{c}{12}$) and the BTZ geometries ($E \ge 0$) are the only smooth solutions of pure 3D gravity: there's nothing in the gap.

Sparseness: Every holographic 2D CFT must have a "small" number of (primary) operators in the gap $-\frac{c}{12} < E < 0 \iff 0 < \Delta < \frac{c}{12}$.

In fact, we require only that $\rho(\Delta) \leq e^{2\pi\Delta}$ for $0 \leq \Delta \leq \frac{c}{12}$.

E.g. Consider $N = c \gg 1$ free bosons. We have $\rho(\Delta) = \exp\left(2\pi\sqrt{\frac{c}{3}\Delta}\right)$ for all $\Delta \ge 0$. There's no gap, so this theory cannot be holographic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

So pure AdS_3 ($E = -\frac{c}{12}$) and the BTZ geometries ($E \ge 0$) are the only smooth solutions of pure 3D gravity: there's nothing in the gap.

Sparseness: Every holographic 2D CFT must have a "small" number of (primary) operators in the gap $-\frac{c}{12} < E < 0 \iff 0 < \Delta < \frac{c}{12}$.

In fact, we require only that $\rho(\Delta) \leq e^{2\pi\Delta}$ for $0 \leq \Delta \leq \frac{c}{12}$.

E.g. Consider $N = c \gg 1$ free bosons. We have $\rho(\Delta) = \exp\left(2\pi\sqrt{\frac{c}{3}\Delta}\right)$ for all $\Delta \ge 0$. There's no gap, so this theory cannot be holographic.

The Hellerman bound states that every unitary, modular invariant 2D CFT must contain a primary with dimension $0 < \Delta_1 \leq \frac{c}{6} + 0.473695$. The bound has since been improved, and is expected to be $\Delta_1 < \frac{c}{12}$.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Hawking–Page Transition

The spectrum in hand, we compute the partition function of 3D gravity:

$$Z_{\text{AdS}}(\beta) = \sum_{E} \rho(E) e^{-\beta E} = e^{\frac{\beta c}{12}} + \int_0^\infty dE \,\rho(E) \exp\left(2\pi \sqrt{\frac{c}{3}E} - \beta E\right).$$

This integral has a saddle point at $E_* = \frac{\pi^2 c}{3\beta^2}$, so to leading order in c,

$$Z_{\rm AdS}(\beta) = e^{\frac{\beta c}{12}} + e^{\frac{\pi^2 c}{3\beta}} \approx \max\left\{e^{\frac{\beta c}{12}}, e^{\frac{\pi^2 c}{3\beta}}\right\}.$$
 (3.2)

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

The Hawking–Page Transition

The spectrum in hand, we compute the partition function of 3D gravity:

$$Z_{\text{AdS}}(\beta) = \sum_{E} \rho(E) e^{-\beta E} = e^{\frac{\beta c}{12}} + \int_0^\infty dE \,\rho(E) \exp\left(2\pi \sqrt{\frac{c}{3}E} - \beta E\right).$$

This integral has a saddle point at $E_* = \frac{\pi^2 c}{3\beta^2}$, so to leading order in c,

$$Z_{\rm AdS}(\beta) = e^{\frac{\beta c}{12}} + e^{\frac{\pi^2 c}{3\beta}} \approx \max\left\{e^{\frac{\beta c}{12}}, e^{\frac{\pi^2 c}{3\beta}}\right\}.$$
 (3.2)

The thermodynamics is then exactly the same as before:

$$\beta F(\beta) = \log Z(\beta) = \frac{c}{12} \begin{cases} \frac{4\pi^2}{\beta}, & \beta < 2\pi \text{ (BTZ)}, \\ \beta, & \beta > 2\pi \text{ (tAdS)}. \end{cases}$$
(3.3)

The **Hawking–Page transition** occurs at $\beta_* = 2\pi$. At low T, the vacuum ("thermal AdS") dominates; at high T, BTZ is dominant. Of course, "small" BTZs still exist for $\beta > 2\pi$, where $E_* < \frac{c}{12}$.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

Modular Invariance in 2D CFT

- 2 Universal Features of the Spectrum
 - The Thermal Partition Function
 - Thermodynamics and Spectrum
- 3D Gravity: Biting Into the Bagel
 The Classical Bulk Solutions
 The Hawking–Page Transition

Modular Invariance in 2D CFT	Universal Features of the Spectrum	3D Gravity: Biting Into the Bagel	3D Gravity from 2D CFT
Gravity vs. CF	Т		

Here's we know about AdS_3/CFT_2 so far:

• All 2D CFTs match 3D gravity when $\beta \longrightarrow 0$ via Cardy's formula.

• But in the limit $c \longrightarrow \infty$, Cardy's formula works for all $\beta < 2\pi$.

Modular Invariance in 2D CFT	Universal Features of the Spectrum	3D Gravity: Biting Into the Bagel	3D Gravity from 2D CFT
0000	0000	00000	00000
Gravity vs. CF	Т		

Here's we know about AdS_3/CFT_2 so far:

- All 2D CFTs match 3D gravity when $\beta \longrightarrow 0$ via Cardy's formula.
- But in the limit $c \longrightarrow \infty$, Cardy's formula works for all $\beta < 2\pi$.

Theorem $(AdS_3 = CFT_2)$

We have $Z_{AdS} = Z_{CFT}$ iff 3 conditions are satisfied:

- The CFT is unitary and modular invariant;
- 2 $c \gg 1$, i.e. the limit $c \longrightarrow \infty$ is taken; and
- **③** The light spectrum is sparse, meaning $\rho(\Delta) \leq e^{2\pi\Delta}$ for $\Delta < \frac{c}{12}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Modular Invariance in 2D CFT	Universal Features of the Spectrum	3D Gravity: Biting Into the Bagel	3D Gravity from 2D CFT
0000	0000	00000	00000

Proof of AdS/CFT

Proof

On the gravity side, we classified all bulk solutions as quotients of AdS_3 . We determined their energies (there's a gap!), computed the entropy and density of states, and evaluated the partition function at large c:

$$Z_{\rm AdS}(\beta) = e^{\frac{\beta c}{12}} + e^{\frac{\pi^2 c}{3\beta}}.$$
 (4.1)

Modular Invariance in 2D CFT	Universal Features of the Spectrum	3D Gravity: Biting Into the Bagel	3D Gravity from 2D CFT
0000	0000	00000	00000

Proof of AdS/CFT

Proof

On the gravity side, we classified all bulk solutions as quotients of AdS_3 . We determined their energies (there's a gap!), computed the entropy and density of states, and evaluated the partition function at large c:

$$Z_{\rm AdS}(\beta) = e^{\frac{\beta c}{12}} + e^{\frac{\pi^2 c}{3\beta}}.$$
 (4.1)

In the CFT, the key idea is to split $Z(\beta)$ into a sum of its contributions from light and heavy states, and then to use **modular invariance**:

$$Z_{\rm CFT}(\beta) = Z_{\rm L}(\beta) + Z_{\rm H}(\beta) = Z_{\rm L}\left(\frac{4\pi^2}{\beta}\right) + Z_{\rm H}\left(\frac{4\pi^2}{\beta}\right).$$
 (4.2)

Modular Invariance in 2D CFT	Universal Features of the Spectrum	3D Gravity: Biting Into the Bagel	3D Gravity from 2D CFT
0000	0000	00000	00000

Proof of AdS/CFT

Proof

On the gravity side, we classified all bulk solutions as quotients of AdS_3 . We determined their energies (there's a gap!), computed the entropy and density of states, and evaluated the partition function at large c:

$$Z_{\rm AdS}(\beta) = e^{\frac{\beta c}{12}} + e^{\frac{\pi^2 c}{3\beta}}.$$
 (4.1)

In the CFT, the key idea is to split $Z(\beta)$ into a sum of its contributions from light and heavy states, and then to use **modular invariance**:

$$Z_{\rm CFT}(\beta) = Z_{\rm L}(\beta) + Z_{\rm H}(\beta) = Z_{\rm L}\left(\frac{4\pi^2}{\beta}\right) + Z_{\rm H}\left(\frac{4\pi^2}{\beta}\right).$$
 (4.2)

Now at large c, the theory's degrees of freedom decouple. That is,

$$Z_{\rm L}(\beta) = Z_{\rm H}\left(\frac{4\pi^2}{\beta}\right), \qquad Z_{\rm H}(\beta) = Z_{\rm L}\left(\frac{4\pi^2}{\beta}\right).$$
 (4.3)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$\mathsf{Proof} \text{ of } \mathsf{AdS}/\mathsf{CFT}$

Proof

Thus we can write
$$Z_{\text{CFT}}(\beta) = Z_{\text{L}}(\beta) + Z_{\text{L}}\left(\frac{4\pi^2}{\beta}\right)$$
.

 Modular Invariance in 2D CFT
 Universal Features of the Spectrum
 3D Gravity: Biting Into the Bagel

 0000
 0000
 00000

3D Gravity from 2D CFT

Proof of AdS/CFT

Proof

Thus we can write
$$Z_{\rm CFT}(\beta) = Z_{\rm L}(\beta) + Z_{\rm L}\left(\frac{4\pi^2}{\beta}\right)$$
.

Finally, we use sparseness, which guarantees that

$$e^{\frac{\beta c}{12}} \le Z_{\rm L}(\beta) = \sum_{\Delta} \rho(\Delta) e^{-\beta \left(\Delta - \frac{c}{12}\right)} \le e^{\frac{\beta c}{12}} \sum_{\Delta} e^{-(\beta - 2\pi)\Delta}.$$
 (4.4)

If $\beta > 2\pi$, then the last factor exponentially suppresses all terms except for $\Delta = 0$. Thus in fact $Z_{\rm L}$ is dominated by the vacuum, and we have

$$Z_{\rm L}(\beta) = e^{\frac{\beta c}{12}} \implies Z_{\rm CFT}(\beta) = e^{\frac{\beta c}{12}} + e^{\frac{\pi^2 c}{3\beta}} = Z_{\rm AdS}(\beta).$$
(4.5)

The partition functions match! (For $\beta < 2\pi$, use $Z_{\rm H}$ instead.)

 Modular Invariance in 2D CFT
 Universal Features of the Spectrum
 3D Gravity: Biting Into the Bagel

 0000
 0000
 00000

3D Gravity from 2D CFT 000●0

Proof of AdS/CFT

Proof

Thus we can write
$$Z_{\text{CFT}}(\beta) = Z_{\text{L}}(\beta) + Z_{\text{L}}\left(\frac{4\pi^2}{\beta}\right)$$
.

Finally, we use sparseness, which guarantees that

$$e^{\frac{\beta c}{12}} \le Z_{\rm L}(\beta) = \sum_{\Delta} \rho(\Delta) e^{-\beta \left(\Delta - \frac{c}{12}\right)} \le e^{\frac{\beta c}{12}} \sum_{\Delta} e^{-(\beta - 2\pi)\Delta}.$$
 (4.4)

If $\beta > 2\pi$, then the last factor exponentially suppresses all terms except for $\Delta = 0$. Thus in fact $Z_{\rm L}$ is dominated by the vacuum, and we have

$$Z_{\rm L}(\beta) = e^{\frac{\beta c}{12}} \implies Z_{\rm CFT}(\beta) = e^{\frac{\beta c}{12}} + e^{\frac{\pi^2 c}{3\beta}} = Z_{\rm AdS}(\beta).$$
(4.5)

The partition functions match! (For $\beta < 2\pi$, use $Z_{\rm H}$ instead.)

So $CFT = \sum_{\text{states}} (\text{fixed channel})$, while gravity $= \sum_{\text{channels}} (\text{vacuum})$.

 Modular Invariance in 2D CFT
 Universal Features of the Spectrum

 0000
 0000

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT ○○○○●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary and Conclusions

- Modular invariance in 2D CFT is expressed by $Z(\beta) = Z(4\pi^2/\beta)$. The IR, where the vacuum lives, strongly constrains the UV.
- At high temperature, $Z(\beta)$ is dominated by the vacuum, so the thermodynamics is universal: $S(E) = 2\pi \sqrt{\frac{c}{3}E}$ (Cardy).

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT ○○○○●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Summary and Conclusions

- Modular invariance in 2D CFT is expressed by $Z(\beta) = Z(4\pi^2/\beta)$. The IR, where the vacuum lives, strongly constrains the UV.
- At high temperature, $Z(\beta)$ is dominated by the vacuum, so the thermodynamics is universal: $S(E) = 2\pi \sqrt{\frac{c}{3}E}$ (Cardy).
- The classical solutions of pure 3D gravity are AdS_3 $(E = -\frac{c}{12})$ and the BTZ black holes $(E \ge 0)$. In particular, the spectrum is gapped.
- At large c, the partition function is $Z(\beta) = e^{\frac{\beta c}{12}} + e^{\frac{\pi^2 c}{3\beta}}$, and there is a Hawking–Page transition between tAdS and BTZ at $\beta_* = 2\pi$.

Universal Features of the Spectrum

3D Gravity: Biting Into the Bagel

3D Gravity from 2D CFT

Summary and Conclusions

- Modular invariance in 2D CFT is expressed by $Z(\beta) = Z(4\pi^2/\beta)$. The IR, where the vacuum lives, strongly constrains the UV.
- At high temperature, $Z(\beta)$ is dominated by the vacuum, so the thermodynamics is universal: $S(E) = 2\pi \sqrt{\frac{c}{3}E}$ (Cardy).
- The classical solutions of pure 3D gravity are AdS_3 $(E = -\frac{c}{12})$ and the BTZ black holes $(E \ge 0)$. In particular, the spectrum is gapped.
- At large c, the partition function is $Z(\beta) = e^{\frac{\beta c}{12}} + e^{\frac{\pi^2 c}{3\beta}}$, and there is a Hawking–Page transition between tAdS and BTZ at $\beta_* = 2\pi$.
- Any holographic CFT must be unitary and modular invariant, have large central charge, and satisfy $\rho(\Delta) \leq e^{2\pi\Delta}$ for $\Delta \in [0, \frac{c}{12}]$.
- Under these conditions, the validity of the Cardy formula extends to all β , and moreover we have $Z_{AdS}(\beta) = Z_{CFT}(\beta)$.

Thank you for listening! Any questions?