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The Partition Function in QFT

Consider an arbitrary QFT on S1
L × {time} at temperature T = 1

β with

Hamiltonian H. The Hilbert space H consists of states on S1
L, so H has

a discrete spectrum {En} bounded below. The partition function is

ZL(β) ≡ TrH
(
e−βH

)
=
∑
n

〈n|e−βH |n〉 =
∑
n

e−βEn . (1.1)

We can always write ZL(β) as a Euclidean path integral on the bagel:

ZL(β) =

∫
T 2(L,β)

Dφ e−S[φ] =

L

β =

L

β =

=

∫
T 2(β,L)

Dφ e−S[φ] = Zβ(L). (1.2)

This relation is completely general. It relates two different theories with
the same Euclidean action but on spatial manifolds of different sizes.
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The Partition Function in CFT

If our theory is scale-invariant, then ZL(β) = LaL(aβ), and only the
“bagel aspect ratio” β

L matters. Thus we set L = 2π. It follows that

Z(β) ≡ Z2π(β) = Zβ(2π) = Z2π

(
2π · 2π

β

)
= Z

(
4π2

β

)
. (1.3)

A 2D CFT is modular invariant if one has Z(β) = Z

(
4π2

β

)
.

The UV spectrum and thermodynamics are determined by the IR.
But the IR is determined largely by the ground state, which is universal.

More generally, β is replaced by τ = iβ
2π ∈ C, and in fact Z(τ) = Z

(
− 1
τ

)
.

Even more generally, Z(τ) is invariant under PSL(2,Z) transformations.
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Operators and their Dimensions

Under the operator-state correspondence, every state with energy E
corresponds to a local operator of dimension ∆, with E = ∆− c

12 .

The central charge is c = cL + cR, and we assume that cL = cR.

The dimension of O is ∆ = h+ h, while its spin is J = h− h.
We will treat only the case J = 0 of zero angular potential.

In radial quantization, the Hamiltonian is a dilation operator,
H = D − c

12 , shifted by the Casimir energy E0 = − c
12

2π
L .

The eigenvalues of H are E; the eigenvalues of D are ∆.

The ground state |0〉 corresponds to the identity operator 1,
which is the unique operator with ∆0 = 0 ⇐⇒ E0 = − c

12 .

Including degeneracies, Z(β) =
∑
E

ρ(E)e−βE =
∑
∆

ρ(∆)e−β(∆− c
12 ),

where the density of states ρ(E) = eS(E) is related to the entropy.
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The Thermal Partition Function

Goal: to study the thermodynamics of 2D CFTs at high temperature.

High temperature: β −→ 0. Then Z(β) −→
∑
E

ρ(E)e−0E ∼ N ∼ eS .

Low temperature: β −→∞. Then Z(β) −→
∑
E

e−∞E = e−βE0 = e
βc
12 .

These two regimes are linked by modular invariance. At high temperature,

Z(β) = Z

(
4π2

β

)
= e

c
12 ·

4π2

β = e
π2c
3β =⇒ logZ(β) =

π2c

3β
. (2.1)

This statement is asymptotic : it’s a good enough approximation at high
enough temperatures, but is silent on when it’s valid and how good it is.
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Thermodynamics and Spectrum

Let’s make like undergraduates and compute! The free energy F (β) is

logZ(β) =
π2c

3β
= βF (β) =⇒ F (β) =

π2c

3β2
=

c

12

(
2π

β

)2

. (2.2)

The thermodynamic entropy S(β) at high temperature is obtained from

S(β) =
(
1− β∂β

)
logZ(β) =

2π2c

3β
. (2.3)

We change to the microcanonical ensemble via 〈E〉β = −∂β logZ(β):

S(E) = 2π

√
c

3
E ⇐⇒ ρ(∆) = exp

[
2π

√
c

3

(
∆− c

12

)]
. (2.4)

This is the Cardy formula. It says that at high energies, all unitary,
modular invariant 2D CFTs have universal thermodynamics.
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Comments on the Cardy Formula

1 The asymptotic behavior modular-invariant 2D CFTs is completely
fixed by the vacuum state, i.e. by the mighty identity operator.

2 Modular invariance means that both IR and UV are universal:

logZ(β) =
c

12

{
4π2

β , β � 2π,

β, β � 2π.
(2.5)

These results are only valid away from the self-dual point β∗ = 2π,
but they might remind you of (!) the Hawking–Page transition.

3 We’ve just solved the bootstrap equation

Z(β) =
∑
∆

ρ(∆)e−β(∆− c
12 ) = e

π2c
3β (2.6)

for ρ(∆). The singular term on the RHS can teach us about
asymptotics on the LHS: that’s how the bootstrap works.
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The Classical Bulk Solutions

Semiclassical AdS3 gravity ↔ CFT2 with c = 3
2G � 1. The spectrum

is given by ρ(E) ∼ eS(E), so we focus on S(E) at leading order in c.

Classical solutions to pure 3D gravity must be locally isometric to AdS3:

1 Global AdS3 corresponds to the vacuum (i.e. 1): E = − 1
8G = − c

12 .

2 BTZ black holes correspond to excited states (i.e. heavy primaries)
and are formed from AdS3 by discrete identifications: E = M ≥ 0.

These have entropy in agreement with the Cardy formula (?!?!):

S(E) =
A

4G
= 2π

√
c

3
E (A ∼

√
M) (3.1)

Unlike the Cardy formula, this applies for all E, as long as c� 1.
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The Classical Bulk Solutions

3 More generally, there are SL(2,Z) black holes that replace β by the
complex modulus τ ∈ F = H2/PSL(2,Z) ⊂ C.

4 One can apply large diffeomorphisms to excite “boundary gravitons”
and create moving BHs. (In CFT, these correspond to descendants.)

5 Turning on matter, one finds conical defects with − c
12 < E < 0,

subleading horizonless geometries, and exotic black objects.
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A Sparse Light Spectrum

So pure AdS3 (E = − c
12) and the BTZ geometries (E ≥ 0) are the

only smooth solutions of pure 3D gravity: there’s nothing in the gap.

Sparseness: Every holographic 2D CFT must have a “small” number
of (primary) operators in the gap − c

12 < E < 0 ⇐⇒ 0 < ∆ < c
12 .

In fact, we require only that ρ(∆) ≤ e2π∆ for 0 ≤ ∆ ≤ c
12 .

E.g. Consider N = c� 1 free bosons. We have ρ(∆) = exp
(
2π
√

c
3∆
)

for all ∆ ≥ 0. There’s no gap, so this theory cannot be holographic.

The Hellerman bound states that every unitary, modular invariant 2D
CFT must contain a primary with dimension 0 < ∆1 ≤ c

6 + 0.473695.
The bound has since been improved, and is expected to be ∆1 <

c
12 .
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The Hawking–Page Transition

The spectrum in hand, we compute the partition function of 3D gravity:

ZAdS(β) =
∑
E

ρ(E)e−βE = e
βc
12 +

∫ ∞
0

dE ρ(E) exp

(
2π

√
c

3
E − βE

)
.

This integral has a saddle point at E∗ = π2c
3β2 , so to leading order in c,

ZAdS(β) = e
βc
12 + e

π2c
3β ≈ max

{
e
βc
12 , e

π2c
3β
}
. (3.2)

The thermodynamics is then exactly the same as before:

βF (β) = logZ(β) =
c

12

{
4π2

β , β < 2π (BTZ),

β, β > 2π (tAdS).
(3.3)

The Hawking–Page transition occurs at β∗ = 2π. At low T , the
vacuum (“thermal AdS”) dominates; at high T , BTZ is dominant.
Of course, “small” BTZs still exist for β > 2π, where E∗ <

c
12 .
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Gravity vs. CFT

Here’s we know about AdS3/CFT2 so far:

All 2D CFTs match 3D gravity when β −→ 0 via Cardy’s formula.

But in the limit c −→∞, Cardy’s formula works for all β < 2π.

Theorem (AdS3 = CFT2)

We have ZAdS = ZCFT iff 3 conditions are satisfied:

1 The CFT is unitary and modular invariant;

2 c� 1, i.e. the limit c −→∞ is taken; and

3 The light spectrum is sparse, meaning ρ(∆) ≤ e2π∆ for ∆ < c
12 .
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Proof of AdS/CFT

Proof

On the gravity side, we classified all bulk solutions as quotients of AdS3.
We determined their energies (there’s a gap!), computed the entropy and
density of states, and evaluated the partition function at large c:

ZAdS(β) = e
βc
12 + e

π2c
3β . (4.1)

In the CFT, the key idea is to split Z(β) into a sum of its contributions
from light and heavy states, and then to use modular invariance:

ZCFT(β) = ZL(β) + ZH(β) = ZL

(
4π2

β

)
+ ZH

(
4π2

β

)
. (4.2)

Now at large c, the theory’s degrees of freedom decouple. That is,

ZL(β) = ZH

(
4π2

β

)
, ZH(β) = ZL

(
4π2

β

)
. (4.3)
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Proof of AdS/CFT

Proof

Thus we can write ZCFT(β) = ZL(β) + ZL

(
4π2

β

)
.

Finally, we use sparseness, which guarantees that

e
βc
12 ≤ ZL(β) =

∑
∆

ρ(∆)e−β(∆− c
12 ) ≤ e

βc
12

∑
∆

e−(β−2π)∆. (4.4)

If β > 2π, then the last factor exponentially suppresses all terms except
for ∆ = 0. Thus in fact ZL is dominated by the vacuum, and we have

ZL(β) = e
βc
12 =⇒ ZCFT(β) = e

βc
12 + e

π2c
3β = ZAdS(β). (4.5)

The partition functions match! (For β < 2π, use ZH instead.)

So CFT =
∑

states

(fixed channel), while gravity =
∑

channels

(vacuum).
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Summary and Conclusions

Modular invariance in 2D CFT is expressed by Z(β) = Z(4π2/β).
The IR, where the vacuum lives, strongly constrains the UV.

At high temperature, Z(β) is dominated by the vacuum, so the
thermodynamics is universal: S(E) = 2π

√
c
3E (Cardy).

The classical solutions of pure 3D gravity are AdS3 (E = − c
12 ) and

the BTZ black holes (E ≥ 0). In particular, the spectrum is gapped.

At large c, the partition function is Z(β) = e
βc
12 + e

π2c
3β , and there is

a Hawking–Page transition between tAdS and BTZ at β∗ = 2π.

Any holographic CFT must be unitary and modular invariant, have
large central charge, and satisfy ρ(∆) ≤ e2π∆ for ∆ ∈ [0, c12 ].

Under these conditions, the validity of the Cardy formula extends to
all β, and moreover we have ZAdS(β) = ZCFT(β).

Thank you for listening! Any questions?
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